

A MERRY CHRISTMAS TO ALL OUR MEMBERS.

In the mailbag this week was a pair of ' P ' plates, sent by the Editor of our 'Competitor'.

Now why 'P' plates. Have they taken them off their 'PREMIUM' state, or is it a hint that VZOU should drive on 'P' plates? Cheeky So \& SOs

The intention was neither. In fact they make a very good packing when sending disks through the post. I hasten to add though, that if you use them, make sure they are the old ones and NOI the newer magnetic type, or you may be sending a blank disk.

But I am displaying them as PROVISIONAL.
Fact is that I have had a stroke and am looking for a new Editor. (See the Trading Post for details of this lucid position. A touch of insanity would also be a help in having your application accepted.) After 4 years I think that someone else should take up the torch. I suggest someone younger. Much younger. If someone cares to take over I will give them all help for the first few issues, and all the data we hold and programs to carry on with. They will also have first option to purchase all or any of my equipment. There are sufficient funds to carry on, which we will transfer to them, unless Ron cares to carry on as treasurer. That is not for me to say.

I shall put out one more issue at least. Jan/Feb. After that depends on circumstances. So the "Ball is in your corner". There is too much "Let George (read Harry) do it" Well the old grey mare ain't what she used to be. I have enjoyed doing this, but of late support has fallen off to zeno, and I don't even knowif the rag gets read!

Failing someone taking over I have made a suggestion to HVVZUG that we combine the 2 clubs, or the $2 \mathrm{~N} /$ Letters. I shall be in Newcastle over Xmas and will discuss it with Joe. To put your minds at rest, if we do close up, there are sufficient funds to refund everyone their outstanding credits, so you won't be ripped off, as has happened in times past.

Let us know what you think and any or all suggestions you may have. I will put out one more issue. It is your club so now take over and do something about it. I am sorry. But I can't 90 on pulling articles out of either my hat or from Bob. Even he must eventually run out.

Now turn to the trading post and write your application.

FOR SALE \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$

VZ300 w/16K mem.expan. DISKDERIVE and CONTROLLERPRINTER INTERFACE. ALL PLUG PACKS AND LEADS. \$250.
VZ300 WITH EXPANDED ROM CHIP FITTEDDISK DRIVEDISK DR. CONTROLLER WITH EXPANDED DOS CHIP FITTED
PRINTER INTERFACE AND ALL LEADS AND POWER SUPPLIES.\$350.
VZ300 COMPUTER---- $\$ 50$.
MEMORY 64 K $\$ 75$
MEMORY 200 16K--\$25
MEMORY 300 16K--\$35
PRINTER INTERFACE NEW ---\$30. USED $\$ 20$
WORDPROCESSOR CARTRIDGE \$50
DISK CONTROLLER FITTED WITH EXT. DOS CHIP AND RESET. $\$ 50$
DISK DRIVE $\$ 70$.
DISK DRIVE POWER SUPPLY.----\$40.
VZ300. NOT WORKING. 4only. \$20 ea.
LIGHT PEN----\$50
JOYSTICKS---\$35 PR.
PLUG PACK
CASSETTE RECORDER DR20----\$25
" " DES 7344- new---\$30.
DISK STORAGE BOXES---\$10.
BACK ISSUES VZDU. $\$ 1.50$ EA POST FREE
VZ ORIGINAL GAMES TAPES. $\$ 3$ ea.
PRINTER SEIKOSHA GP250X. Tractor feed.---\$75.

Welcome to the Christmas issue of the games column.
I've just finished my yr 11 exams and already I have assessments to complete before week something-or-other. Hell, lacking any sort of energy and will power I^{\prime} ve let the games hints and tips slip from my mind. Rut I did have a games review prepared for a few issues ago which did not make it to the final drawing board.

So for this issue I will review a game that I'm sure everyone has heard of; "DAWN PATROL."

It is in binary and I can not enter into the program to identify the author. It is very popular, as anyone who has folloued the high scores from the begining would know.

You are given the task of rescuing 80 prisoners from four prison camps behind enemy lines. Using the only available means of transport, you fly a helichopter to each camp, land inside the enclosure and wait till all the prisoners, or as many as you can carry, run out to the chopter= But these's a few catches, the more prisoners you collect the more petrol you use up. Camps one to four are guarded be tanks. Tanks can only shoot farrallel to the ground and can get you while you are loading the prisoners: Camps one to three are also guarded by missiles launches, which shoot missiles into the air and travel at 4 degrees left or right. Camps one and two also have 'planes that appear, fire a missile and disappear into the distance. You can not shoot the 'plane but you can shoot the missile. A few times more then a normal surface to air missile.

On top of that your mission starts at 4 . DDam and terminates at 6. 000 am .

You score points for the amount of prisoners you return to base with. Prisoners are worth more depending on which camps they came from. Camp four (the closest) prisoners are worth 100 , camp three are worth 200 , camp two are worth 500 and camp one are worth 1500.
O.K 50 it's a pretty short review. How about some-one, ANYONE, giving me some fill-in material. You know =. . an opportunity to get your name up in "lights." A drawing or design would do, using one of the drawing programs from our library. It could be a games title, or your version of a little gobbling games monster, or whatever catches your imagination. But it would be a help for fill-in material!

Library tape two has a drawing program called "Sketches". It will print out your drawing. The others won't print, but it is easy to modify them so that they will. Load the program you want, <LIST〉 it, and find the string commands, then add the print or copy command. Just take lines $3020-3050$ in "Sketches" as a guide. These lines contain the string commands. Line 3030 contains the string which will enable you to print your design. If "P" has already been used for something else then just use another letter. Make a note WHICH letter, because if you hit the wrong one you will lose your drawing
and have to start ALL OVER AGAIN.
Don't forget to load "Printer Patch" before you load the drawing program.

Sorry to hear you haven't heen well, Harry. But it's the timing of your misfortune that has me worried as well. Just a week beforehand my younger brother Mitch played soccer at South Melbourne. He was delighted to be able to meet Harry at the soccer grounds. THEN, one week later $=$. oh, dear! As an older brother I have always known of the CURSE of younger brothers!!!

Just kidding everytody! HONEST!!!
Anyway Harry, here's hoping you're feeling great again now and that you and all VZ-ers have a tremendous Christmas and a safe and happy New Year.

TIM.

TRADING FOST.

DOWN UNDER CLUB
12 Thems ST. Mitcian. 3132.

SITUATION SOON TO BECOME VACANT.

Editor of Leadimg V.Z. Newsletter and Secretary of old established Computer Club.

Any 12 year old person, with Master's Degree in Electronics, Computer Languages, Psychology and Psychiatry, and with the patience of Job, the foresight of Jacob, the manipulating ability of Mandrake and the luck of James Bond would be acceptable.

However, greater Age and lesser qualifications would be considered.

Location; Anywhere
Hours; Enormous
Salary; Nil
Any applications to President, care of this Rag.

INTRODUCTION TO PROGRAMMING - PART I
 by Bob Kitch

I have been asked to contribute a series on BASIC programming for the VZ-Users. So here goes.

Firstly, the series will be unconventional. Most introductions to BASIC proceed blow-by-blow through the various BASIC commands. I will not - many texts exist which can explain these better than I can.

Secondly, the series will initially be non-specific to any particular computer language. General programming concepts and guidelines will be offered. The principles will be equally applicable to BASIC, Assembler, Pascal or whatever.

Thirdly, advanced programming concepts and hints will be offered as they are needed. This is the best time to introduce these since their mystique is removed.

Fourthly, early emphasis will be on PLANNING, ORGANISING and MAINTAINING a program, rather than encouraging feverish coding at the keyboard (which is usually commenced too early by beginners).

It is quite possible to recognise a breed of compulsive programmers, born from the home micro boom. This breed, is emerging from the brave new world of tomorrow's technology whose reason for existence is simply to program. People become totally fascinated by the unlimited abstract world that the inside of a computer offers. We can create a Universe or any World inside a machine. In the abstract world of programming, a well thought out programming method serves as a MAP, and the techniques of software engineering are the WEAPONS. These then are the main threads of this series.

Let's commence this month with a few definitions and concepts to ponder over until the next installment.

THE COMPUTER is a machine, and is only capable of doing simple work. It has been termed by some as "a remarkably efficient counting machine with a large memory - but no brains!" It has no intelligence and cannot think.

A COMPUTER SYSTEM consists of four elements :-

1. the Central Processor Unit (in the VZ it is the Z-80A microprocessor chip) with "primary memory" (ROM and up to 34 K RAM).
2. Input devices - keyboard, cassette, disk and so on.
3. Output devices - screen, printer, cassette, disk, in-built speaker, voice and sound synthesisers etc.
4. "Secondary memory" - not essential but may be cassette or disk when used to update or relieve primary memory.

MAN-MACHINE INTERFACE. The interaction between man-machine inputs and outputs is a continuous and circular feedback process. e.g. man output (keypress) is machine input ..or.. machine output (screen prompt) is man input- . and so on. This interaction forms the basis of using computers.

The four fold subdivision of a computer system is little different to our own mental capabilities. The CPU and primary memory is broadly equivalent to our mind. The I/O devices are similar to our senses (touch, taste, sight, sense of heat, speaking, hearing). The secondary memory is directly comparable to our use of external aids to assist our memory, such as note books, filing cabinets of information, telephone directories - all of which have slow access and are difficult to recall compared with things already resident in our mind.

COMPUTER PROCESSES or CAPABILITIES are surprisingly few in number. There are only FOUR and unless an exercise or problem can be broken down into these elementary processes, then coding of the program should not commence. A greater understanding of the problem is required before proceeding.

It is important to clearly distinguish two things whilst programming. The first, is to devise a LOGICAL solution to the programming exercise, which is
quite independent of the particular language to be used. The second, is the actual COOING of the exercise being undertaken. The latter stage is easy, provided that the former is well understood. The computer program will only function correctly if the logic of the program is correct, and there are no aids or diagnostics available from the machine to assist in achieving correctness in this demanding aspect of program desion. Some diagnostics are however available to assist in the coding portion of the task - such as the SYNTAX checking.

As one becomes more familiar with programming languages it is soon apparent that many of the powerful command structures are simply macro instructions formed from these few "primatives".

The four processes are :-

1. Input data and store it in primary memory - the data may be either "raw" data input (e.g. from keyboard) or read-in from the secondary store. (e.g.tape).
2. Output data already stored in primary memory - either as "output" (e.g. to screen) or written-out to secondary memory (e.g.tape).
3. Perform simple arithmetic procedures (addition or subtraction) upon data in primary memory only.
4. Perform logical comparisons (disjunction, conjunction and negation) between two items of data in primary memory.
(Remember - I/O, arithmetic, comparisons only)
To continue the analogy with ourselves, I doubt whether we can do anything more than these operations except that we use experience. The computers' analogue of this is the PROGRAM as it possesses zero intelligence.

THE PROGRAMMING TASK is to utilize the high speed and large memory capacity of a computer system to do something useful - such as carry out calculations (number crunching), play games, monitor house security etc.

The spectrum of tasks involved in programming is very broad, so little wonder that beginners have trouble grasping the essentials, or that many programs are "badly" written. The task involves taking an idea or concept and translating that into a symbolic (program statement) form of representation. An intermediate stage in this translation often involves modelling the phenomenon being programmed. This psychologically involves moving from concrete concepts to various levels of abstraction - again a very difficult thing for, particularly young, minds to master.

The transition from an idea to a program can seldom be achieved in one leap more often a number of intermediate steps are required. Liken it to writing an essay where drafts and notes are used before the final prose is produced. Fortunately a number of useful tools have been developed to assist in producing a good program.

In my view, one of the greatest pitfalls of the home computer boom is that these intermediate steps are not understood by Users so that, at least, bad programs and, at worst, disillusioned progranmers result. Many of these people may find their way into the computer industry of the future. There is ALWAYS more personal satisfaction in achieving a "good" job even if it is only a games program for the kids. It is also more fun, (the essence of home micros) as there is less hassle in getting a program to run, and more time for more programs.

In the microcomputer environment where there are always hardware limitations, it means that it is very difficult to completely seperate hardware and software aspects of the programming task. The programmer may have to get "close to the hardware" - usually due to hardware/memory limitations or restricted I/O capabilities. Don't shy away from hardware by saying "but I am only interested in writing programs" as the two are somewhat inseperable.

Next month we will look at the various stages in the programming task, or how to approach a programming exercise. (see, no mention of BASIC code in this article!)

Finally, I would like to offer to Users that your programming queries will be
answered if you write to me - with a SAE. please. In this manner you should get what you want and I will obtain a feel for the type of problems Users in the Hunter Valley are experiencing.

Write to Bob Kitch, 7 Eurella St., KENMORE, Qld. 4069
As mentioned in Part 1 of this series, the programming task is a large and complex feat of organization and requires a wide range of skills. It is possible, and best, to break the task down into six segments - each of which must be thought about, planned and then carried out to ensure the successful completion of a software project. Even a small program requires that a cursory consideration of the six segments be made - although some of them may be quickly passed over as trivial. But it is certain that larger programs (more than 200 lines) require careful planning for success.

Before describing the six steps, it is worth thinking about "What makes a GOOD program?"

A program may be judged from a number of different standpoints; each is not necessarily mutually exclusive and sometimes some conflicts require that a trade-off be made.

The first criteria is that a program should be EFFICIENT. Efficiency can be considered from a number of varying view points. For example, optimization of the run-time can be considered as efficient. Also, reduction in storage requirements for both program code and variables can be considered as efficient programming. Furthermore, and particularly if one is developing software commercially, then efficiency can be measured in terms of the actual time required to get an applications program running and the ease of maintenance of that code. The use of appropriate data types and data structures can greatly improve the efficiency of a program. The selection of a suitable algorithm can also assist. Finally, ease of debugging so that the program can be updated or modified may be considered desirable.

The second criteria is GENERALITY and it is here perhaps that so many programs "score" so poorly. Rather than a program being written to solve a particular chore, it should be broadly written to handle a wide range of problems. The use of subroutines and functions developed and debugged previously can enormously improve programming productivity. Often a simple sustitution of a variable for a constant in a program can broaden the the applicability of the program significantly.

The final criteria is ELEGANCE, which is a little harder to both define and achieve. An elegant program is one that is simple and ingenious, and possibly uses an algorithm or data structure that may not be immediately obvious to the application. The so-called "programmer's tricks" are often elegant solutions to a programming problem; but beware, some are attempts by programmers to conceal their programming stategy.

These then, are general guidelines to try and attain in your programming and by which to judge a particular programming effort as good, mediocre or poor. Notice that they are not language specific comments and are equally applicable to any programming language or exercise.

To return to the six steps in the programming task - I will briefly discuss each in turn and ask that you consider each one when embarking upon your next programming exercise. Also as one proceeds through the steps, it is often necessary to recycle back through some of the preceeding steps, to iteratively improve the exercise and your understanding of ideas.

1. PROJECT SELECTION. This may appear trivial, but we all have too many ideas for programs and rarely know which one to tackle next. Also be honest with yourself; some of the projects are probably too ambitious for your existing skills and an attempt upon these will possibly result in frustration and perhaps failure. Choose an exercise that is challenging and worthwhile. Try not to "reinvent the wheel", try to be aware through reading magazines or discussing with other Users what programs are already available. Modifying an existing program to suit your specifications is sometimes quicker - it also allows you to study how other programmers tackle problems. O.K., so now you have an idea or problem that you wish to tackle and solve.
2. PROJECT FEASIBILITY. Again be honest. Do you have the hardware, software and know-how to achieve the result? Its is not really much use trying to write large business-oriented data base programs for an $8 K$ taped-based VZ! Check that the task is reasonable.
3. PROJECT DEFINITION. This is where the idea starts to get translated into a reality. It is also the phase where generality can be written in. It is easiest to start by thinking about the input to the program. Is it keyboard oriented, or is it to come from a programmble I/O port? Perhaps the program reads only DATA statments to configure itself or maybe the program must check if a printer is connected to the sytem? Start defining what the input will look like. Assion variable names with meaningful memonic names at this stage also.

Next, define the output expected from the program. Is it to write to tape and in what format? Perhaps it is to be screen oriented - can sound be used - or perhaps voice synthesis to tell the operator what is going on? Plan very carefully and fully the layout of the expected output as this is how Users will initially perceive the quality of the program.

After defining the I/O for the program we should now have a feel for the anticipated range of parameters that the program is meant to accept and also handle. This brings in the very important concept of defining the BOUNDS within which the program must function correctly. Following on from this, is range checking of all input parameters so that the program cannot go beyond the range that it was designed for and give unexpected results. A number of warning messages must be built into the program along with error capture and recovery routines. It is failure to define the operating bounds of a program that causes most crashes or rogue behaviour. Even the definition of integer variables at this stage can assist by improving program execution time and reducing storage requirements.

The definition stage should be roughed out on pieces of paper kept for later reference. Perhaps better, is to use an old exercise book. Another benefit of this is that over a period of months your progress can be measured and your growth of programming ideas recorded. Another benefit (although I hardly dare mention it!) is that if, after the coding stage, a system crash occurs and you didn't SAVE the program, then all is not lost - at least an outline of the program remains.
4. DESIGN PHASE. Having sorted out I/O and operating bounds, the actual selection of an algorithm to achieve the result is cormenced. By this time some idea of the number of variables required and their type should have begun to gel. This is also the stage where your basic honesty in stages 1 and 2 may catch up with you! Data structure organisation and algorithm selection are really experience-related skills - hence the suggestion to read and/or modify existing programs. But do not despair - practice makes perfect.
5. IMPLEMENTATION PHASE. To date very little actual coding should have been done; in fact the computer need not even have been turned on! Some people may be surprised at how late in the task the computer actually enters into the picture. An awful lot of planning and organizing can be done off the computer and on the "backs of old envelopes".

It is also at this stage that the choice of programming lanouage should be made. Is the program time dependant? If it is, then it should probably be written is Assembler. If the actual timing is not so critical then writing in BASIC with its diagnostics and helpful features (so typical of a high level language) deem it sensible. Experienced programmers will probably use a bit of each in practice. A very sensible compromise is to develope the program in interpreted BASIC and once finalized and debugged, compile the BASIC code to speed up execution.
6. EVALUATION PHASE. This is the moment of truth! Does the program fulfil all the criteria set out in the definition phase. If so, then you have succesfully achieved your task. Is the output as you expected it? Are the results correct? It is a good idea to have a standard set of data to exercise the program so that it can be quickly verified after a program alteration. Ensure that all logical paths through the program have been exercised so that no spurious errors of logic
remain undetected. Finally, deliberately try values that are out of the intended bounds of the program to ensure that you have trapped them and that the program recovers from this type of misuse above and beyond its' intended design range.

CONTINUED FROM PAGE 14

HISTORY

Reprinted from the MPCUG journal PC UPDATE. Author Ian McDowell

Australia possessed only three electronic digital computers in the late 1950s;
.CSIRAC at Melbourne University
. SILLAC at Sydneu University
.WREDAC at the Weapons Research Establishment at Salisbury

CSIRAC is now a musemum piece, and you may see it at Monash University Chrisholm Campus in Caulfield.

CSIRAC used punched paper input.It possessed only addition, subtraction and ultiplication resident routines. All other required copying library tape segments to the user's input roll. Logical circuits used thermionic valves, the transistor had appeared but not been mobilised. Mercury delay line held information. Cathode ray tubes displayed the bytes contained in fifteen storage registers. A Friden Flexowriter read and printed punched paper tape output. CSIRAC had about the power of a T159 TEXAS Instruments programmable calculator. Nonetheless, on the word of command DO, it produced RESULTS. It freed us from slow and noisy electro-mechanical machines. Learned persons produced all sorts of worth-while discoveries on all three computers. The first conference on automatic computing and data processing in Australia at Sydney University inn May 1960 gave oppertunity to share these discoveries. Presenters gave a total of 157 papers; 42 on commercial applications, 65 on technical applications, 41 on design and programming techniques and 9 describing other computers soon to be offered by commercial firms. This writer spoke to a technical paper on a problem solved using CSIRAC which various learned journals later published in Australia and overseas. The rise of electronic digital programmable computing seems rapid to it's youthful euthusiasts, but it has taken a third of a century to reach it's present level, andit's early proponents look for the 486 in the geriatic ward.

Postcript by Peter Smith, editor of MPCUG PC UPDATE.
I too have fond memories if CSIRAC--my introduction to computing. I recall those huge festoons of 12-track paper tape and the desire, and need, to cram more and tighter code into it's 768 words of memory(20 bits each, yes the "BYTE"-a word not yet invented-was then only 5 bits long). I compare my portable, battery powered trlrphone, weighing a few ounces, to the tons and cubic yards of CSIRAC, needing a small power station to drive it, and realise that the phone has more memory than CSIRAC and is much more user friendly! I have long since decided that only knaves and fools dare predict longer than about 5 years in this industry.

```
GRAND PRIX
```


0281° CAID 14CBH
Oz82；CONVERT RESULT TO INTIUGIRR

0885 EEST
0286：MOVX RIGET
02874VHI LD DE．（CARL）

0288	IAC	DE
0289		（CAER ），DE

O2gRHYLE LD DH：（CARL） 0293 0294 LD
0296：INCREASH EPFFTD

0294
0298
0300
0301 LD \｛SFEI\}, HL
030？RIET
O30：3：DECRETASE 8PEKU

0304 N	1．1）	［1L，（Symb）
0305	LD	U3， 50
0300	ADD	111．DK
0307	$5]$	\｛GPED）${ }^{\text {，HL }}$
4308	Exis	

0305；HORT ECORISS
O＇S 10 ；COMPAKE YOUR／CHAMPION SCR
O311EORT LD EHL，（YSCR）

0312	LD	DE，（（SCH）
0913	CALL	On38II
0314	CP	OFFEI
0315	JE	2，AX＇P3

O316；YOUR SCORE IS CEANPIOM
0317 L．）（CSCR），HL

$\begin{array}{lll}0320 & \text { LD } & A, 1 \\ 0.321 & L D & \text {（BISGG），A }\end{array}$
0322；COMPAER YOUR／SUENUND 5CORE
Q323NXT3 Li）DE，（SSKR）

0324	CALL OB39H	
0325	CP	OFFH
0326	JH	L． 9×15

0327 ；YOXR SCORE IS SECORD SCOHR
0328 LD（SSGR），HI．
0320 EX DE，EL
ORTO；CONPARE YOUH／THIRD SCORT
D33 INXT4 LD DR，（TSCR）
$\begin{array}{ll}0332 \\ 0333 & \text { CAL OABER OFFR }\end{array}$
0.94 JP Z，RSLT

O335；YOUR SCORE IS THTRD SOOREX
OARE LD（TSCZ）， HE
O337BSLE LD．A，（HESG）
$\begin{array}{lll}03.98 & \text { CF } & 1 \\ 0333 & \text { NZ MASC }\end{array}$
O8dO；IMLNT CHANFICN S00RF
0341 ID HL，MSIS
0×12 Ln $\mathrm{DE}_{2} \mathrm{YIDE}+38 \mathrm{~B}$
0343 LD BC， 20
n34 LDI筑
0345 ；YOUR SCOPR NOT CHAMPIOA O34日EESG 1D RL，MS15
$!\ldots$ rin

$!\ldots$ r．n		
0350：		
0351	10	WE，VIDE 4 452
0352	Ld	BC， 25
0353	LDIR	
0354	RETY	
O35E；SMAN	ND $5 \times \mathrm{y}$	DTIME，
O3FASTOND	गUSH	A F
0357	FUSMI	BC
0358	MISH	DE
0348	P1987	HI．
0336	IL	HL OM645
OSR 1	In	Br：，©00AAI
0\％¢	CALL	345 Cr
0315	PG）	8）．
0364	POP	DE
0365	MP	Er：
0366	PuT	AF
0387	RET	
O363；DRAF OTHER CARS ON DOAD		
03690BETT	LD	［II．， 11 （
0370	Calt3．	EAND
0371	T－D	HL，（ POBN）
0372	ADD	HR，DE
0373	EX	Dr，HC．
0374	LD	HL，CAB31
0375		BC， 2
0.776	T，DIR	
0377	RET	

O378；RAIT FOR KEYBOARD IRPUT

OJBOKEYB PUSH EC
O．3日T PUSH DE
0383 PGSH HI
0384 POP HL
O3E5 POF DE
0386 PGP BC
034\％ERT
OBRB；PRINT INBTRUCTIOAS
O3EYEKAN LD HL，MSisi
0300 ID DE，VIDE＋4
0.291 LD HC， 20

0322 IDIR
0393 LD RL，MSAT
0394 ID FRE．VIEE＋36
0395 LD PC， 20
039 L LDIR
0397 LD HL，MSG3
0390 LD DE，VIDRtB6
0394 LD IP， 20
0400
0401
04092
0403
04034
3404；
0406
0407
0408
0409
0410
3411
0412
0413
0415 LI BC， 20
0416

041 ID DE，VIDE＋106
LDID
ID EIT．MSCA4
LD DE，VIDE +100
LD EC： 80
LDIR I MaC5
LDD DE，VIDSE＋13Z
LD BC， 20

LDIR

LD EL，MSGO
TD DE，VINI＋164
LD EC， 80
LADTR
ED HL，MSC37

LDIR

0417
0418
0419
0420
0425
0428
0427
O42R
0429
0430
0431
0432
0433
0434
0438
0436
0437
0438
0239
0440
0441

LD HL, NSGB
LD DE, VIDE+22B

LDL
LD HL, MSGE
LD DE.VIDR+260
LD BC, 22
LDIR
L. HI. MA310

1D DE, VIDE +292
LD BC, 22
LPIR
LD HI., MS11
LD DW, VIDR+324
3.D BC, 22

LDJR
LD TLL, MSI2
LD DI, YIDE+856
LD RC, 22
LDIR
RLT
O492; PRINT SCDRES
0443; PRINT CEAMPION SCOHE 0444: BKT NTF FLAG=2 (INTEGER)
O44ESEOR CALL OARDH
0446 ID HI, CECR
0447 ; LOAD 4 BYYTS FROM THE 0440 ; LOXATION POINTED TO BY HL 0449 ; fATTO THE ACCUMULATOR (ACC) 0450

CAll 05B1H
0451 ; CONVERTS ACC TO ASC11
$0452:$ STRIWG DHLIMITED BY ZERO
0453 CALL OFBDH
0454 LD DE, VIDE 308
0455 ; CURSOR LOCATION
0458 LD (78206) DE
0467; PRINT MESSAKR POIMTED TO
D45B; BY HL. MOST GHD IN KEROO.
0459
CALL 2BTSH
0460; PRINT CARRTAGE RETURN
0461 LD A, ODH
4482 CALL O33AH
0463 ; PRINT SMCOOND SCDRE
0464 CAld OAPDH
0485 LD HL, SSCR
0466 CAEX 09B1I
0467 CALL OFBDH
0468 LD DE,VIDE +340
0469 LD (7820H),DE
0470 CALL 2B75B
0471 ;PRIHT CARRIAGE RETURA
0472 ID A, ODH
0473 CALL 033AH
0474 ; PEINT TIIEAI SCORIE
0475 CALL OA9DH
0476 LD HL,TSCR
0477 CALL O9B1H
0178 CAIL OFBDH
0479 LD DE, VIDE +372
0480 LD (7820H), DE
0481 CALL 2B7EH
0482 HET
04B3:DRAM VERGR
G4BdURAK ED ED, MS13
0485 LD DE,YIDE
0486 ID BC, 32
$0487:$
0488;

0491 L.DIR
0492; DkAP POAD
O493 LD EfL, BOAD
0494 LD DE, \{POSM\}
0485 LD BC, 18
0496 LDIR
0487 HET
OAGE: COPY LINE 1 TO WINOLE ECCHEAT
O4906OPY LD HI, YEUK
$0 \% 100$ DH, YIDE+32
0501 LD BC, A4G
0502 HABT
$050 \$$ LDIR
0504 FET
OKOF; IRAAN CAR
O5DGDBCR LD HI,CAAR
0507 LD DE, \{CABL $\}$

EC, 2
.
0411 RET
O512; START OF SCRICTN
O513VIDE EOD 7000H
OS14;CRANPION FLAG
0515 MESG DIFB 0
O516;CAR DESIGN
OX17CAAR DEFW OP79BH
0516 ; ORSTACKE CAR DESERN
$0814 \mathrm{CAR1}$ DEFW O989日L
OSZO; CRASH CAR MESIGH
OEZ1CAR2 DEMN ORD9FH
O522; CAR LOCATICN ON SCRREEN
$0523 C A R L$ DEFF VIDEt 496
OJ24:CRAMPION SCORE
O5:25CSCR DEEW 2
0526 DEFW O
0527: SECOND SOORE
$05285 S C R$ DETU 0
0528 DEFT O
O530:THIEX 8CORE
O531TSCR DEPW O
0532 DHFW 0
OS33; YOUR SCORIE
0534 YBER DHEW 0
0535 DEFP 0
O53B;DRLAY FOZ EPERED CONFROL.
0537 GPED DEFW 0
OS38; MAXIMJM ECORT FLAR
OB99NGCR DRKW 100
13540 ; MIMIMUM SPPEED WLAG
0541 MENS DEFF 1700 H
0542;ROAD FOSITIGN On SCiESEN
0545 PUZ
0544 ;CAR CRASHED FLAAG
O545FLAAB DEFB 0
OSAB; POAD DESIGN
OS 47 MOAD DXIT QRFB7H
0548 DEFT OBEBTH
0549 DIFFW OREBFE
0550 DETN OBPBFE
0551 DEF OBMB7H

O5ES DUGTM OBFBITI
0054 DEFF OBEBFH
O555; MTSEAKESS
0566 man 1 Caj
O5ST; . 6010 PAGE 9
058?
0550:

